EXHIBIT 0

TECHNICAL ASSOCIATES BOARD OF CERTIFICATION

2359 PERIMETER POINTE PARKWAY, SUITE 270 CHARLOTTE, NC 28208 PHONE: 704-333-9011 FAX: 704-333-1728

Vibration Analyst Classifications:

Category I:

Scope of Certification:

Personnel classified to Category I are able to perform a range of pre-defined, generally simple single-channel, machinery vibration condition monitoring activities in accordance with established procedures. All activities shall be performed under supervision.

- a) know the basic principles of vibration and recognize the different units of measurement;
- b) be able to collect reliable data ensuring appropriate standards of repeatability;
- c) be able to identify errors in collected data;
- d) be able to retrieve pre-defined measurement settings for use with vibration analysis equipment and transfer data from analysis system to a computer-based system;
- e) be able to compare overall or single-value vibration measurements against preestablished alert settings;
- f) be able to identify deviations from the norm for single-value vibration values and trends;
- g) report on visual observations of equipment condition.

Education: Candidates do not need to provide evidence of formal education to

establish eligibility for certification.

Training: Candidates seeking full certification are **required** to complete 30 hours of

training based on the requirements in ISO 18436-2:2014.

Experience: Candidates seeking full certification are <u>required</u> to have a minimum of six

(6) months experience in the field of machinery vibration condition

monitoring and diagnostics.

Category I: Body of Knowledge/Training Topics:

Subject: Principles of Vibration

- Basic Motion
- Period, frequency
- Amplitude (Peak, Peak-to-Peak, RMS)
- Parameters (displacement, velocity, acceleration)
- Units, unit conversions
- Time and frequency domains
- Natural frequency, resonance, critical speeds

Data Acquisition

- Instrumentation
- Transducers
- Sensor mounting, mounted natural frequency
- Test procedures
- Computer database upload/download
- Recognition of poor data

Signal Processing

FFT application

Condition Monitoring

Fault condition recognition

Fault Analysis

General fault recognition

Corrective Action

Basic maintenance action

Equipment Knowledge

- Electric motors, generators and drives
- Pumps, fans
- Compressors
- Rolling mills, paper machines, other process equipment
- Machine tools
- Structures, piping
- Gearboxes

Acceptance Testing

Test procedure

Category II:

Scope of Certification:

Personnel classified to Category II are able to perform industrial machinery vibration measurements and basic vibration analysis using single-channel instruments, with or without phase trigger signals, according to established and recognized procedures. They require all the knowledge, experience and skills expected of Category I, and in addition they shall at least:

- a) be able to define the measurement activities to be undertaken by a Category I individual in the course of routine data collection:
- b) be aware of and capable of using the basic principles of signal analysis and, as such, can
 define acquisition and analysis settings to collect data appropriate to the machine(s)
 monitored;
- c) be able to perform basic (single-channel) impact tests to determine natural frequencies;
- d) be able to interpret and evaluate test results from routine analysis and acceptance tests in accordance with specifications and standards;
- e) be able to diagnose common fault indications and recommend basic corrective actions commensurate with their area of machinery experience including carrying out singleplane balancing of rigid rotors with or without phase;
- f) be able to provide technical guidance to and instruct Category I personnel.

Education: Candidates do not need to provide evidence of formal education to

establish eligibility for certification.

Training: Candidates seeking full certification are <u>required</u> to complete 38 hours of

training over Category I, based on the requirements in ISO 18436-2:2014.

Experience: Candidates seeking full certification are required to have a minimum of

eighteen (18) months experience in the field of machinery vibration

condition monitoring and diagnostics.

Category II: Body of Knowledge/Training Topics:

Subject: Principles of Vibration

- Basic motion
- Period, frequency
- Amplitude (Peak, Peak-to-Peak, RMS)
- Parameters (displacement, velocity, acceleration)
- Units, unit conversions
- Time and frequency domains
- Phase
- Natural frequency, resonance, critical speeds

Data Acquisition

- Instrumentation
- Transducers
- Sensor mounting, mounted natural frequency
- F_{max}, acquisition time
- Proximity sensor conventions
- Triggering
- Test planning
- Test procedures
- Data formats
- Recognition of poor data

Signal Processing

- Analog recording, digital sampling
- FFT application
- Time Windows (uniform, Hanning, flat-top)
- Filters (low pass, high pass, band pass, tracking)
- Anti-aliasing
- Bandwidth, resolution
- Noise reduction
- Averaging (linear, synchronous time, exponential)
- Dynamic range

Condition Monitoring

- Equipment evaluation and prioritization
- Monitoring program design
- Baseline assessments, trending
- Route planning
- Fault condition recognition

Fault Analysis

- Spectrum analysis harmonics and sidebands
- Time waveform analysis
- Phase analysis
- Shaft centerline analysis
- Enveloping
- Mass unbalance
- Misalignment
- Mechanical looseness
- Bearing defects (rolling element, journal)

- Electric motor defects
- Gearbox analysis
- Resonance and critical speeds

Corrective Action

- Shaft alignment
- Field balancing
- Basic maintenance action

Equipment Knowledge

- · Electric motors, generators and drives
- Pumps, fans
- Steam turbines, gas turbines
- Compressors
- Reciprocating machinery
- Rolling mills, paper machines, other process equipment
- Machine tools
- Structures, piping
- Gearboxes
- Rolling element bearings
- Journal bearings
- Gearing
- Coupling, belts

Acceptance Testing

- Test procedure
- Specifications and standards
- Reporting

Equipment Testing and Diagnostics

- Impact testing
- Forced response testing

Reference Standards

- ISO standards
- IEC standards
- Relevant national standards and other specifications

Reporting and Documentation

- Condition monitoring reports
- Vibration diagnostics reports

Fault Severity Determination

- Spectrum analysis
- Time waveform analysis, orbit analysis
- Levels: Overall, narrowband, component
- Severity charts, graphs and formulas

Category III:

Scope of Certification:

Personnel classified to Category III require all the knowledge, experience and skills expected of personnel classified to Categories I and II, and in addition shall at least:

- a) be able to design, direct and establish routine condition monitoring programs and non-routine investigations for the purpose of fault diagnosis;
- b) be able to specify the appropriate vibration instrumentation hardware, software and processing for portable monitoring systems, permanently installed surveillance systems and equipment protection systems;
- c) have an in-depth knowledge of the principles and techniques of machinery vibration analysis and be able to make initial diagnoses of suspected faults beyond the range of commonly encountered issues. This should include, but not be limited to, the use of frequency spectra, time waveforms and orbits, transfer functions, basic operating deflection shapes, and acceleration enveloping under both steady state and transient conditions with or without a phase trigger;
- d) be able to manage such condition monitoring programs, evaluate the alarm settings, write working procedures and specify vibration acceptance testing procedures;
- e) be able to initiate and validate machinery corrective actions including in situ two-plane rigid rotor balancing;
- f) be able to recommend restrictions to machine operation;
- g) be able to understand and direct, when necessary, alternative condition monitoring technologies to verify or investigate issues raised through routine data collection;
- h) be able to provide technical guidance to and instruct Category I and II personnel, and, subject to agreement with the employer or client, deem them competent to carry out certain duties which would normally be outside the scope of those competencies.

It is the responsibility of the employer or client to ensure that Category III personnel have the necessary competency in the required management skills, e.g. creating budgets, preparing cost justifications and managing personnel development.

Education: It is recommended that candidates are familiar with current vibration

analysis technology. Successful completion of two or more years of mechanical technology or engineering at an accredited college, university

or technical school is recommended.

Training: Candidates seeking full certification are <u>required</u> to complete 38 hours of

training over Category II, based on the requirements in ISO 18436-2:2014.

Experience: Candidates seeking full certification are **required** to have a minimum of

thirty-six (36) months experience in the field of machinery vibration

condition monitoring and diagnostics.

Prerequisite: Candidates seeking full certification are <u>required</u> to have current and valid

certifications at ISO Category II.

Category III: Body of Knowledge/Training Topics:

Subject: Principles of Vibration

- Basic motion
- Period, frequency
- Amplitude (Peak, Peal-to-Peak, RMS)
- Parameters (displacement, velocity, acceleration)
- Units, unit conversions
- Time and frequency domains
- Vectors, modulation
- Phase
- Natural frequency, resonance, critical speeds
- Force, response, damping, stiffness

Data Acquisition

- Instrumentation
- Dynamic range, signal-to-noise ratio
- Transducers
- Sensor mounting, mounted natural frequency
- F_{max}, acquisition time
- Proximity sensor conventions
- Triggering
- Test planning
- Test procedures
- Data formats
- Recognition of poor data

Signal Processing

- Analog recording, digital sampling
- FFT computation
- Time Windows (uniform, Hanning, flat-top)
- Filters (low pass, high pass, band pass, tracking)
- Anti-aliasing
- Bandwidth, resolution
- Noise reduction
- Averaging (linear, synchronous time, exponential)
- Dynamic range
- Spectral maps

Condition Monitoring

- Computer database set-up, computer database maintenance
- Monitoring program design
- Alarms set-up (narrowband, envelope)
- Baseline assessments, trending
- Route planning
- Alternative technologies (e.g. infrared thermographic testing, acoustic emission testing, ultrasonic testing, lubricant management, tribology and wear debris analysis, motor current analysis)

Fault Analysis

- Spectrum analysis harmonics and sidebands
- Time waveform analysis
- Phase analysis
- Transient analysis
- Orbit analysis
- Shaft centerline analysis
- Enveloping
- Mass unbalance
- Misalignment
- Mechanical looseness
- Rubs, instabilities
- Bearing defects (rolling element, journal)
- Electric motor defects
- Flow induced vibration, aerodynamics and liquids
- Gearbox analysis
- Resonance and critical speeds
- Turbomachinery

Corrective Action

- Shaft alignment
- Field balancing
- Replacement of machine parts
- Flow control
- Isolation and damping
- Resonance control
- Basic maintenance action

Equipment Knowledge

- Electric motors, generators and drives
- Pumps, fans
- Steam turbines, gas turbines
- Compressors
- Reciprocating machinery
- Rolling mills, paper machines, other process equipment
- Machine tools
- Structures, piping
- Gearboxes
- Rolling element bearings
- Journal bearings
- Gearing
- Couplings, belts

Acceptance Testing

- Specifications and standards
- Reporting

Equipment Testing and Diagnostics

- Impact testing
- Forced response testing
- Transient analysis
- Transfer functions

- Cross channel phase, coherence
- Operating deflection shapes
- Modal analysis

Reference Standards

- ISO standards
- IEC standards
- Relevant national standards and other specifications

Reporting and Documentation

- Condition monitoring reports
- Vibration diagnostics reports

Fault Severity Determination

- Spectrum analysis
- Time waveform analysis, orbit analysis
- Levels: Overall, narrowband, component
- Severity charts, graphs and formulas

Category IV:

Scope of Certification:

Personnel classified to Category IV require all the knowledge and skills expected of Category I, Category II and Category III personnel. In addition, they shall be able to direct and audit condition monitoring strategies.

Employers should recognize that a Category IV individual is likely to have a broad technical knowledge and experience of a range of machine situations and techniques, and an in-depth knowledge of a selection of them.

In addition, personnel classified to Category IV shall at least:

- a) be able to apply vibration theory and techniques, including measurement and interpretation of multi-channel spectral results such as frequency response functions, phase and coherence;
- b) be able to understand and perform signal analysis, including understanding of frequency and time domain processing, including orbits and their limitations;
- c) be able to determine the natural frequencies, mode shapes and damping of systems, components and assemblies;
- d) be able to determine and assess the operating deflection shapes of machines and connected structures and recommend means for correction;
- e) be able to use generally recognized advanced techniques for vibration analysis, parameter identification and fault diagnosis;
- f) be able to apply the basic principles of rotor bearing dynamics to vibration diagnosis;
- g) understand and apply advanced two-plane influence coefficient or static and couple balancing theory:
- h) be able to recommend corrective actions or design modifications, including component change or repair, isolation, damping, change of stiffness and change of mass;
- i) be able to interpret and evaluate codes of practice and specifications published in international standards and other documents;
- j) be able to recognize vibration caused by gas pulsation in machines, such as reciprocating machines and screw compressors, be able to measure the necessary parameters, and recommend means for correction;
- k) be able to recommend corrective actions for resilient mounting and other hold down and foundation problems.

Education: It is recommended that candidates seeking certification are familiar with current vibration analysis technology. Successful completion of two or more years of mechanical technology or engineering at an accredited college, university or technical school is recommended.

Training: Candidates seeking full certification are <u>required</u> to complete 64 hours of training over Category III, based on the requirements in ISO 18436-2:2014.

Experience: Candidates seeking full certification are <u>required</u> to have a minimum of sixty (60) months experience in the field of machinery vibration condition monitoring and diagnostics.

Prerequisite: Candidates seeking full certification are <u>required</u> to have current and valid certifications at ISO Category III.

Category IV: Body of Knowledge/Training Topics:

Subject:	Principles of Vibration
Jubject.	Vectors, modulation
	Phase
	Natural frequency, resonance, critical speeds
	Force, response, damping, stiffness
	Instabilities, non-linear systems
	Data Acquisition
	Instrumentation
	Dynamic range, signal-to-noise ratio
	Test planning
	Test procedures
	Signal Processing
	RMS and peak detection
	Analog to digital conversion
	Analog recording, digital sampling
	FFT Computation
	Filters (low pass, high pass, band pass, tracking)
	Anti-aliasing
	Bandwidth, resolution
	Noise reduction
	Averaging (linear, synchronous time, exponential)
	Dynamic range
	Signal-to-noise ratio
	Spectral maps
	Condition Monitoring
	Monitoring program design
	Alternative technologies (e.g. infrared thermographic testing,
	acoustic emission testing, ultrasonic testing, lubricant
	management, tribology and wear debris analysis, motor current
	analysis)
	Fault Analysis
	Spectrum analysis harmonics and sidebands
	Time waveform analysis
	Phase analysis
	Transient analysis
	Orbit analysis
	Shaft centerline analysis
	Enveloping
	Rubs, instabilities
	Electric motor defects
	Flow induced vibration, aerodynamics and liquids
	Resonance and critical speeds
	Turbomachinery
	<u>Corrective Action</u>
	Field balancing
	Flow control

	 Isolation and damping
	Resonance control
<u>E</u>	Equipment Testing and Diagnostics
	Impact testing
	Forced response testing
	Transient analysis
	Transfer functions
	Damping evaluation
	 Cross channel phase, coherence
	 Operating deflection shapes
	Modal analysis
	Torsional vibration
<u>F</u>	Reference Standards
	 ISO standards
	IEC standards
	 Relevant national standards and other specifications
<u>F</u>	Reporting and Documentation
	 Vibration diagnostics reports
<u>F</u>	Fault Severity Determination
	Spectrum analysis
	 Time waveform analysis, orbit analysis
	 Severity charts, graphs and formulas
<u> </u>	Rotor and Bearing Dynamics
	Rotor characteristics
	Bearing characteristics
	Rotor Balancing